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What is the Electric Grid?

• Features –

 Supply must always meet demand (sort of)

 Large hourly and season variations in electricity demand

 Operating reserves to maintain system stability and reliability

A very large rotating machine spinning at 60 Hz

Source: 
Mullane & 
O’Malley
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Four Independent North America Grids
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And Many Balancing Areas
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Demand Patterns Similar for Much of the U.S.

NYC (Con Ed) Demand in 2005
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A Few Locations in North America are Winter Peaking

Ontario - 2015
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Traditional System Operation

9

Variations in demand traditionally 
met by thermal and hydroelectric 
plants

GE Energy 
2010 (WWSIS)
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How Can We Possibly Make the Grid Work with Lots of VG?

1. Claim it isn't possible, or it is                 
possible but lots of storage is 
needed

2. Just build lots of renewables and see what 
happens

3. Perform actual science, math, engineering, 
and analysis

10
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Framework – Net Load

Net load- what’s left over when you add wind and solar
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The Most Famous Version 

Source: CAISO 2013
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Impacts of Renewables on the Grid

13
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Quantifying the Impacts of Renewables on the Grid

• How much fuel is actually saved?

• What is the actual economic value?

• Is “backup” needed?  Doesn’t this add costs and 
emissions?

• How much renewables can even be used?

• If the wind blows more at night do you need to 
store some for use in the day?

• Is storage needed?

14
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How We Do Grid Integration Science

o Software that simulates a large interconnected grid 
considering thousands of generators, and transmission

15

PV science machine

Grid integration
science machine
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Grid Simulation Requirements

• Very expensive commercial software package that 
includes existing generation mix, transmission system
o ~10 Vendors/Software packages
o Annual licenses routinely exceed $100k
o Massive database
o ~5 hours to >400 days per simulation

• Names include
o “security constrained unit commitment and economic dispatch”
o “production cost model”
o “chronological dispatch model”
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Steps to Performing a Realistic Analysis of Renewables on 
the Grid

1. Acquire detailed solar and wind data
o Use lots of wind and solar simulations to consider spatial diversity

o Sub-hourly wind and solar data across large amounts of the U.S. didn’t exist before a few years ago

2. Calculate change in reserve requirements
o Use standard industry methods for calculating changes in 

regulation reserve requirements based on variability 
o Consider new methods of addressing

longer term variability and 
uncertainty

3. Modify data sets to incorporate more
realistic generator performance
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Steps to Performing a Realistic Analysis of Renewables on 
the Grid

4. Hit go and wait…
•

18
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Simulation Outputs

• Did the grid work?
• Did you drop load or violate reserve 

requirements?

• What was the impact of forecast error 
or variability on cycling costs and 
emissions?

• Did you actually use all the renewable 
generation?
o How much curtailment?

• Did a bunch of bad things happen to 
indicate storage is needed?

19
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Example Dispatch in Colorado

Denholm et al. 
2014
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Power Flow and Transmission
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Example Simulation - Solar PV in the Summer
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Reserve Violations can Indicate Loss of Reliability
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First Generation of Wind Integration Studies 
(<2010, up to about - 20% Penetration)

• Focused on basic operability and “integration costs”.

• Integration costs are modest (typically less than $5/MWh). 
Ongoing questions as to what this even means….

• Spatial diversity smooths aggregated wind output reducing 
short-term fluctuations to hour time scales

• Almost all the wind can be used (very little curtailment)

• Additional reserves have a modest impact on operational costs
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Second Generation
• Higher penetration (up to 35% penetration of wind and solar)

• Examines impact of increased system flexibility 

• General Conclusions

• Extensive co-operation will be needed

• We may be nearing the flexibility limits of the grid as it exist today

• High solar penetrations are more difficult than high wind

• Curtailment may be the primary limitation for economic deployment of 
wind and solar
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Limits to VG Penetration - Curtailment

• There are no technical limits to how much VG 
can be put on the grid – only economic limits

• You can always find a piece of hardware to solve 
the problem (including storage….)

• At high penetration, economic limits will likely 
be due to curtailment
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WWSIS II High Wind Case (8% solar, 25% wind)

http://www.nrel.gov/electricity/transmission/
western_wind.html

Curtailment

Lew et al. 2013
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WWSIS II High Wind Solar (25% solar, 8% wind)

Solar is 60% PV and 40% Concentrating Solar Power with 6 hours thermal 
storage

Curtailment

Lew et al. 2013
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Sources of Curtailment

Too much supply, not enough demand, when 
considering:
• Ramp constraints
• Transmission constraints
• Minimum output levels from hydro and thermal 

generators
o This also includes the need to operate partially loaded 

capacity to maintain system reliability

• Many of these challenges are institutional in 
addition to technical
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Current System Flexibility
Limited by Baseload Capacity

Price/Load 
Relationship in PJM

Below Cost Bids
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Impacts of “Must-Run” Generation
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Curtailment with Limited Flexibility

Used and curtailed VG in California on March 29 
in a scenario with 11% annual wind and 11% annual solar
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Curtailment Increases Rapidly
Marginal curtailment = curtailment of all incremental VG moving 
from one penetration level to the next  
Total curtailment = curtailment rate of all PV installed on the system 
at a certain penetration level

Marginal and average curtailment due to overgeneration under increasing 
penetration of PV in California with limited grid flexibility
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Consequences of RE curtailment

• Technically easy to do (at least on utility-scale 
renewable energy generation)

• But reduces economic benefits measured by 
either increased cost of decreased benefit
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Impact of VG curtailment on LCOE
Curtailed energy means less can be sold and incremental costs of 
additional PV rise dramatically 

Marginal and average PV LCOE (based on SunShot goals) due to 
overgeneration under increasing penetration of PV in California with 

limited grid flexibility
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Avoided Generation and Fuel
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Avoided Generation Costs
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Increasing PV Value and Avoiding Curtailment

• While storage provides an “obvious” answer to the problem of 
supply-demand coincidence, there are a number of options

Denholm et al. 2010
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Flexibility Supply Curve Concept

39

Denholm et al. 2010
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Flexibility Supply Curve Concept

40

You probably do this first
Cochran et al. 
2015
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Mitigation Options

Type Description

Generator flexibility Ability of conventional generation to vary output over various time scales 

Storage flexibility Ability to store energy during periods of low demand and release that energy 
during periods of high demand 

Geographic flexibility Ability to use transmission to share energy and capacity across multiple regions

Load flexibility Ability to vary electricity demand in response to grid conditions
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Impact of Increased Flexibility 
Dropping the minimum generation level increases the amount of load 
served by PV

Net load on March 29 in a scenario with 15% annual solar 
increasing the grid flexibility
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Increased Flexibility = Increased Penetration
PV penetration of 25% with less than 20% marginal and 5% total 
curtailment

Marginal and average curtailment due to overgeneration under increasing 
penetration of PV in California with enhanced grid flexibility
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And More Competitive Costs

Marginal and average LCOE due to overgeneration under increasing penetration of PV 
in California with enhanced grid flexibility
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Increased Flexibility Increases VG Value
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Curtailment as a Function of Flexibility

Average curtailment rate as a function of VG penetration for 
different flexibilities in ERCOT
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Different RE Mixes Improves Supply/Demand Coincidence
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How High Can We Go?

• Can renewables themselves largely de-carbonize the electric 
sector?

• Results from various studies indicate that beyond 35% VG, new 
sources of flexibility will be needed for economic deployment of 
renewables

• Need to perform scenario analysis to consider all options and 
mixes of renewable resources
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Renewable Electricity Futures

Technology cost & 
performance
Resource availability
Demand projection
Demand-side 
technologies
Grid operations
Transmission costs
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Mai et al. 2012
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RE Resource Supply from 30% - 90% Electricity

Additional variability challenges system operations, but can be 
addressed through increased use of supply- and demand-side 
flexibility options and new transmission.

Mai et al. 2012
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A Transformation of the U.S. Electricity System

RE generation from technologies that are commercially available today, in 
combination with a more flexible electric system, is more than adequate to 
supply 80% of total U.S. electricity generation in 2050—while meeting 
electricity demand on an hourly basis in every region of the country.

Mai et al. 2012
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How? Build New Transmission…
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Deploy Dispatchable Renewables

Source:  Denholm et al (2012)
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Harness Responsive Demand (smart grid?)
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• 8-10% of wind, solar, hydropower curtailed in 2050 under 80% RE scenarios

Mai et al. 2012
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• RE Futures develops about 80 GW of new 
storage, in addition to the 20 GW of 
pumped storage existing in the U.S.

• Lower cost storage would be more 
competitive

• We don’t understand the opportunities of a 
world with low cost energy storage 

..And yes, develop new storage

Mai et al. 2012
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Energy Storage Can Reduce VG Curtailment
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Cost Optimal Storage Deployment?

Now - Conventional 
Pumped Hydro: ~ 20 GW

Future 80-140 GW 
depending on REF scenario

Mai et al. 2012
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But we are just not there yet….

Value of bulk storage (sited on the transmission network) 
in today’s system
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A Tipping Point for Storage?

The adoption of storage may be primarily driven by its 
ability to offset conventional capacity aided by the 
increase in value associated with VG deployment
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Conclusions: What I Think I Know About the Grid and Storage (<35%)

• Numerous studies have demonstrated the 
feasibility of 35% RE

• New methods of grid operation are 
required
• Significantly increased cooperation across large 

areas
• More ramping of thermal units
• Storage is probably not the least-cost option 

for increased integration
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What I Think I Know About the Grid and Storage (>35%)

• Less explored territory
• Curtailment rates increase
• Any and all sources of grid flexibility will be needed

• Demand Response
• Long distance transmission?

• Value of storage increases
• At some point low cost sources of flexibility will be 

exhausted and storage will be an increasingly 
attractive means of utilizing wind and solar 
• Non obvious sources of storage may be cost-competitive 

(Thermal storage in buildings, CSP with TES)
• Storage adoption may be driven by its ability to 

replace conventional capacity
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Questions?

Paul Denholm
paul.denholm@nrel.gov
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